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Abstract. New braid group representations associated with the fundamental representations
of B,, C, and D, are derived They are shown to sausfly Birman-Wenzl algebra By

PN + P PR, PR

Yang-Baxterization we obtain new solutions of Yang-Baxier equaiions, incloding e
twisted extensions Quantum group structures related to these new solutions are exphcitly
given

1. Iniroduction

The solutions of Yang-Baxter equations { YBE) attract more and more attention because
of their importance 1n both mathematics and physics, such as statistical models [1]1,
scattering matrices [2], knot theory [3]%, conformal field theory (crr) [4]8, quantum
groups [5-91], and so on. Typically explicit examples of the solutions of YBE are those
associated with the fundamental representations of B,, C, and D, (as well as AY and
AR ) as given by Jumbo [7], Reshetikhin [8] and others [10, 11]. It is well known
that these solutions possess ‘perfect’ properties; for example, the usual classical limits,
in accordance with the general conclusion of Belavin and Drinfeld [12], and the
g-analogue co coefficients [8,13} and also the standard way of constructing the
g-eigenvaliues and the corresponding g-projectors [8] Moreover, this type of solution
is connected with the current form of the quantum group [6-8]. We thus call them
‘standard solutions’ of vBE.

In our previous work we developed a systematic prescription to generate the
solutions of vee [14-16). The basic idea is as follows. Firstly, we solve the braid
relations to give the braid group representations (BGRs). This step obtains the asymptotic
solutions of S-matrices (with infinity rapidity). In the process of the weight conservation
should be taken into account. Secondly, for a given 8GR we present a general prescrip-
tion of Yang-Baxterization to generate the corresponding solution of v8E [15]. Finally,

t This reprninted volume collects together many onginal articles
A generai reference
§ Examples of the connection between braid group representations and CFT
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for given BGRs we follow Faddeev-Reshetikhin-Takhtajan (FrT) [17] to establish the
related quantum group (QG) structures which, in general, may not be the same as the
stancard ones if the BGRs are not standard [18].

Therefore, we see that BGrs play the central role in finding solutions of vse and
consiructing QG structures from the point of view of FrT.

In thus paper we would like to present a general form of BGRs associated with the
fundamental representations of B,,. D, and C, that after Yang-Baxtenization automati-
cally generate the twisted extensions; for example, ASY and AL, corresponding to
B, and D,. This solution system contains the standard family as a particular case;
however, there exists a new family of BGrs. We call these new solutions ‘exotic solutions’
to distinguish them from the standard ones. Actually, the exotic BGRs associated with

51,(2) was first introduced by Lee et al [18]

2. New solutions of BGRs

For completeness we first list the standard solutions of BGRs denoted by T for B,
C and DY, as given by Jimbo [7]:

T=q E ekk®ekl+w Z ekk®emm+ Z Em@émk

k=0 k<m k=m
h+m=Q k+m#=0
-+ kZ Bt D € (€om)ap = Brabos (2.1)
m

where w=g—¢g ' and

1 (k=m=0}
Q=4 g " ) {k=m#0) {2.2)
W(ak—m - ekgmqkk’ﬁ) (k < m)

e =1(~2N~1)/25k< —}), e, =—13= k=< (2N -1)/2) for C}" and e, =1 for B,}",
D,

k+% (-(N-1)/2=k<0)
k=dk {k=0} (2.3)
k-1 0<k=(2n-1)/2)
for B, DY,
. [k} (-2n-1)/2<k= -}
k= 2 2
{k+% G=k=(2n—1)/2) (2.4)
for CV,
The labelling set above is taken to be
L=[(N-1)/2,(N-1)/2—-1,...,~(N-1)/2] 2.5)

which 15 a little different from that of Jimbo [7] N=2n+1 for B, and N =2n for D,
and C,.
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Now we extend the result to cover more general cases
By the weight conservation and cp invariance the sGr T has the general form

— (m) (km)
T=Yuu®@eu+ L wilneu@eunt T Pim eom® e
k k=m

k<m

* k_z q‘h‘mjei-m@)g—km (k! mel (ekm)ab - Ekasmb) (2‘6)
where

=P g @)
and

PN genp g (2.8)

] ja==c~ 4§ fla<icj=g¥ a0 l. i

c>0

in which

a,bcde[(N-1}/2,(N-2}/2-1,...,~-(N-1)/2] (29)

Equations (2.7) and {2.8) come from the restrictions of the ‘six-veriex-type’ solutions.
Following our previous works [ 14] the corresponding diagrammafic expression reads

a b a a tiz<b a#bh a\ -a
X =y, ||+ widls i‘é‘l"’ﬂfﬁ:’ X + gted! \){' (2.10)
|
c d b a c’—c
where
a b a#b
| ,.{1 a=cb=dao<bh _{1 a=d#b=:
*1 o otherwise X 0 otherwise.
¢ d b a

Substituting (2.6) into the braid relations after tedious calculations, including the use
of the extended diagrammatic technique [ 14], we derive the following general solutions
of BGRs:

T= Z ukekk®ekk+ w Z ekk®emm + E ekm®emk+ z akmek—m®e—km (2 Il)
A#ED h<m k#m km
k+m#=0 k+m=0

where
=q or —q°! for k%0

and

U_p = .
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The a,,, are given by

[ i (k=m=0}
;! (k=m#Q)
m—1
w[l*u (ﬂ u, )] (k=-m=<0)
|h+mi—1
A =4 (=11 Pl T w)! (k=0<mork<m=0)
=1
mf—t
(Wl)!\-\\-lnrlwu;lflu;l/:( HH u,-l) (0<k<l?‘l or k<m<0)
1=lhj+1
m—1 J&1—1
\(——})H"”'wu;,"zugm( HH u;l)( li[l u,'z) (k<0,m>0,k+m=0)}
(212}
for B!
[ ou)! (k=m}
m—1,2 \
w[l—su;l( I u,__';,g) u,,:] (k=-m<0)
=1
w2 mﬁ’mu up'”?
Ain = " o (2.13)
(O<k<mor k<m<0)
Lf mTie k| +1/2 e
-Ewu;,”'( lk];[ . :/z)( H u,. m)un “ui,s
1=lki+1,2
\ k<0, m>0,k+m=0)
where —g =1 for C¥ and £ =1 for D{!".
The distinct eigenvalues are given by
(T=A)(T =2, HT~-A;)=0 (2.14)
where
Ay Az A
iB , /fI A {
n - u -
q q (;=] ! }
(2.15)
C, _q7’ q (];T ;~1f1) ulw/lz
Dn q _q_l (I_I )u1/2

When one of #4515 not equal to g the eigenvalues are different rrom the standard ones,

i.e. we meet new solutions [t is easy to

understand that the solutions derived are

natural generalizations of the standard ones from the point of view of the biock-diagonal
matrix structures of BGrs [14, 19]. Based on the general discussion the BGR under

consideration possesses the form

=block diag(T;, Ts,.

*3 Trﬁ—l: Tn: Tn"'l!"‘)

I, 1) (2.16)
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where T, is an n x n submatnx For each odd-dimensional submatrix there is a ‘central
element’ denoted by uy,.,. The parameters appearing in the sub-blocks will be
determined by the substitution of one sub-block by another 1n the braid refations. The
first one is simply ¢ and the second one should be

o]

q W

However, there 15 more than one possibility for the third one 1 solving the braid
relatsons. It allows the central element to be either g or ~g7*, which gives rise to quite
different forms of the other sub-blocks by braid relations. When all of the central
elements are g our solutions are the same as Jymbo’s [7]. However, if one of the central

elements is equal to —g~' we will meet new solutions of the rGR. It is not difficult to
check that the results m [20] are speaial cases of our general forms.

3. Birman-Wenzl algebraic properties

It has been known that the standard solutions obey Birman-Wenz! (Bw) algebra [10].
Now let us show that the new solutions (2.11)-(2.15) stil satisfy the sw algebra. It is
pointed out that a BGr T and the related E = J —w™ (T T ")(w=g—g7") satisfy the
Bw algebra if they satisfy [22]

(i) E&l = r(a)r(c)6(a, b')8{c, d") (3.1)
(i) r(a)r(a’y = £1 (a'=N+1-a) (32)
(iit) z TSHr(b)y=A3" (3.3)
and
T %0 only fora+b=c+d 3.4)
THh=Th" (3.5)

with a'= N+1—a, a belongs to (2.5) 8(a,c)=1fora=c and 8{a,c)=0fora=c
Under such a convention and the labelling set L as weil as the notation

(e.:),=8(a, i) 8(by) (3.6)
the sGr T can be recast in the form

T= Z U,e,,@e"'f‘ Z eu®ejl+ Z urleu’®e;'.

= r#ng’ T
or 1=y=4"
+w ¥ e,®@e,~wr Hi)r(j')e., ®e, 3.7
<<y i<y
where
u =y, u,=qor —g' (3.8)

u,=1 (only for B,) (3.9)
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and under (2.9)

D" Tl n i=0 for B,
4=
(i) ={ wiul? Tl u >4 for C, (3.10)
J=172
u 2w 0 1>1 for D,
=172
Noting that
ri)=r""{-1) (i<®) (3.11)

in terms of (3 11) 1t is not difficult to prove that the sGr T found in section 2 satisfies
(3.1)-(3 5}, i.e. obeys sw algebra. The operator E 1s defined by (3.1) where r(1) is
given by (3.10). The direct check shows that T and E satisfy the Bw algebra. [ntroducing

T=I®I®..TR. &I (3.12)
we have

T, =T T, T, =TT, [F-kj=2

T =T '=w(I-E)

EE.E=E EE, = E/F, [i~ki=2

ET=TE=E T BB =ETLT,=EE,.,

LaET. = T—’ijlT;' (3.13)

‘Ejtl-E:r];tl:-E}:tlT;l TumE;E,ﬂ: T;IE:p::t

ET.E=A"E, Efz(l—ﬂ_:ﬂ)gj

where A =A; and w=g—g"".

We emphasize that by interchanging A; and A, and leaving A; unchanged we still
obtain the Bw algebra. This point is important to generate the solutions of YiE associated
with A and A%Y_, from the BGRs associated with B\ and D"

4. Yang-Baxterization

Since the general solutions (2.11)-(2.13) satisfy the pw algebra it is easy to perform
the YVang-Baxterization according to the discussions in [15,21,22]. As was pointed
outin[15] and {21] there are two ways to Yang-Baxterize the Bw algebra. One solution
of the vyBE Is

R(x)=Mx(x~1)T ' +(14+ A/ At A/ A+ A /AKX ~ A (- DT (4.1)

and the other one, denoted by R,(x), can be obtained by A, <>A; and A, A, in R.(x).
For simplicity we only write the explicit form for case (a) under (2.9):

éa(x)=k§0“kekk®ekk—{qz—1)(x‘§)( RZ +x X )ekk®emm

k>m
k-rms0 k+mz0
+a{x—1){x-&) kZ Cm® e+ Y @u,(X)erm ®e_im {4.2)
#=m k.m

k+m=0
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where
_[x-ax-8) (e =) .

uk(x) {_qz(x_q—Z)(x_g) (ukz_q—l} (4—3)
and

i (X} = q(x ~ 1)(X@m — Erm ) + (£ — 1 g” ~ 1)x8, _,,

[a7'AS! for B and D'V
Ed‘{_qh;i for CL” (4'4)
(i) = @ (11 "). (4.%)

The R,(x) can be obtained by the formal interchange g<>—g " and keeping A;
unchanged. The solutions thus derived correspond to the *twisted” ones. For instance,
corresponding to K,s of B'Y and D", case (b) gives the solutions relating to A% and
A, respectively. This is easy to check by means of the standard solutions. We note
that case (b) is the ‘normal’ sclution for C,; however, case (a) is still a solution We
do not know about the Lie algebraic description of case (b) for C, yet. All of the new
‘twisted’ solutions deserve to be understood.

It is worth discussing the eigenvalues in detail, since they relate to the diagonal-
ization of BGRs. The first two eigenvalues A, = u=g and A,=uv=—g ' appear only in
the sub-blocks other than the largest one, whereas the third eigenvalue A=A, only
appears in the largest sub-blocks. We thus focus on considering the eigenvalue equation
of the largest sub-blocks. By calculation we find that

(A—u)" A — ) [A+( i1 ujfm) uf,‘z] =0
=1

when
(ﬁlaﬁm)u{ﬁ#iu or £u for C,{n,=n or n—1)
=
and
(A~u)""""M A —p)" [f\ - (Jii[l H;——zuz) “1/2] =0
when
( In] u,‘f’l,-z) My 7 kUt OF £b for D,(n,=n or n—1).
re=t

There are three distinct eigenvalues for B,, whereas when
n L]
( I u;f,,z) uh for C, (or( 11 u;_zl,z) 1y, for D,,)
1=1 i=1
1s equal to tu or +v the eigenvalue equation is reduced to
(A—-u)"(A-0v)"=0

namely, the number of distinct sigenvalues is no fonger the same as the decompogition
dimension, being two rather than three. For instance, for C, we have the minimum
polynomial

(T~u)(T—-1)=0.
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The multiplicity of two in (4.6) is essential This indicates that the corresponding BGR
cannot be diagonalized. One can check this statement generally or explicitly through
example, say C: Even in such a case it is proved that solutions of BGRs can sull be
Yang-Baxtentzed by either case (a) or case {b).

5. Quantum greup structure

As 1s known, for a given BGR the corresponding quantum group can be constructed
with the help of the Faddeev-Reshetikhin-Takhtajan (FrT) approach [9]. However,
for our problem the direct application of FrT is complicated and we, therefore, fotlow
[11], using an equivalent but simple technigue to set up desired relations satisfied by
the generators of guantum groups (i.e. algebra). Suppose

Rix)=A(xX)T+B(x)1+C(x)T™" {5.1)
satisfies the vBE

Rya(x) Ros(x9) Rual(¥) = Rs() Ry x9) Ras(x) (5.2)
then the Yang-Baxter operator can be defined by {11]

(tan(X))ea = RE(x) (53)
in accordance with

R{xy ) 1(x)®1()) = (1)) @1(x) R(xp ™). (5.4)

Following [11] the asymptotic behaviour of #{x)..¢ and {{x).-1.¢ gives the generators
of quantum group by omitting the factors A(x)..,and C(x),-1, {even the limits tend
to infinity).

The caiculations are lengthy so we only give the resuits.

(i} For B, we have

(:u(xnab}r*b

= A{x)l':—ﬂl{u:aabaa: + anbiag, t + “:isabsx’u}
a=n+l1
= A(x)lx-»o(ka)nb
(tn(x))ablxacc
= C(x)if-’x{ul—laabaﬂl+8ﬂhla$]_;’ + uaaubaz'a}

= CUX N eaack b7 Vab

(o (%) Yanlea
= AL ol W88, s — Wr() (N —1)8 x5 108,15}
= A(X)|cmow(e)as

(fucr(xNapH e n
= C(X)]cmacf = W81 8 + wr{e + 1D F(I')8, 08—}
= COO| vl =w)(f
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The coproducts read

K, =kk’ K.=h;
Xi=e X =f =12 ..,n-1
X5 =(u,+u,"YWe, X o=(u, +u;"Y"f,
[X7.X7]1=8,(K-K)/w nj=1, . .n
KXTK = ()" X, 1=1,. ,n-—1
K XK =ul'X; i=1,. .. n
Koo X K =ul, 1=1,. ,n—2
KX K =(u,)" X}, KXo K =(,) X,
KX*K'=X, ;AJ|>1, KK =KK,

The Serre relations become, under the representation,
(X7)=0 i=1, .,n-1 (X5@=0
MXD) =k, @XT+ X2k t=4,.. ,n-1

MXO=IRXI+XI®k,
AMXDY=k'"@XT+X @k,
AMX ) =k'@& X+ X,81 AR )=k ® k7

where [ stands for the unit matnx.
The antipode and the co-unit are given by

we derive

yik)y=k' y(Iy=1 e(X;)=0 elk")=
Y(X V= -k WXk Y(X7 =-kX ko
y(Xa)=-X k' HX5)=-kX.

(n) For C,, by introducing
‘K, =kk K,=k,
XF=e, X =f f R
Xi=(1-rF(n) e, X, =(1—r(n+1)) ir
(X7, X 1=8,K~K)w Li=1,. ,n
KXK' =(uu, ) X7 1=%,.,..,n—1
KX K =(u) X7
K_ XK \=ul'X} K o XFKDh =uio X7

K. XK. l""(“ )szu

[ZR VN Tl I o
RA N, TA,

s L2 74

KRR, =RK,.

h=-N
\’.'

2687
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The Serre relations under these particular representations read
(XEY¥ =0 i=1,..., 5

The coproducts are given by
MXD) =k, ®@X/+X ®E } 1 w1
AXD)=k'®X]+X, Ok, T
AXD=k®X +X,®k,
AMXD)=k'®X, + X, @k
ART) =kE® kT,

The antipode and co-unit are given by

yik,) =k e(X7}=0 e(k)=1
(XD =~k WXk Y(X)=—kX ko
y(X=—k'X k' Y(X) =~k X k.

(iii} For I, we have
(IS 5 JIN
= C(X)]c-sool = WBan+18pn—y + WE(n + 1)1 (11 +2)80p 2850}
= = C(X WS )b
(Enstm-1{x ) as] o
= A(x)| ool WBan 181 — W0 — )T (1) 8,804}

= AL xaowlen)ay-

Introducing
K =kk} i=1,...,n—1, K, =k,_\k,
Xi=e¢ X =f 1=1,...,1—-1 Xi=e, X, =1
we obtain the following relations:
(X7, X 1=8,(K,—-K"')/w Lji=1,...,n
KX K =(uu, ' X7 i=1,...,n—1
KXTK: = (yu, ) X5
K X:Ky=u"X7 i=1,. .,n~1

Koo XK =(u0)7 X7

K, XKL =uf  ul' X

KX Ky =) ug' X,

KX oKy ={u, )" X5,

Ko XK= (u, )7 X5

KX7K'=X7 li—g=1 LjEnn=2
KK, = KK, i=1,...,n
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Under the chosen representatioss the Serre relations are
(X:r=0 h=1...,n

The coproducts are given by

AXT) =k ®X +X] @k

A(xr)=kr'®xr+xr®k;:.} he el

AX) 2 E,@X, + X, 0k,

MX) =k LOXT+ X @k A =k @K
The antipode and co-unit are given by

ylk) =k, s(X7)=0 s(ki) =1

WX = kLXK

X 1 =-kX ko 1=1,. .,n~1

(X3 =~k Xk, Y(Xo)=—k. Xk,

We would like to emphasize that in the standard cases were u, = g for all indices
i the quantum group derived in this section is nothing but the usual quanium universal
enveloping algebra shown by

[XT7.X;1=8,(K.— K 'V/w
K,X;K,‘l = g%ijX, KK =KK,

with a, being the Cartan matrix element of Lie algebras B,, C, and D,.
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