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Abstract. New braid group representationsasrociated with the fundamental representations 
of E., C,, and D,, are denved They are shown io ratefy Birman-wuenrl algebra By 

I ",&g-o.Lnirr equa,,ui,s, rllli"dlllg tire 
twisted extensions Quantum group S ~ ~ U E ~ U I ~ S  related to these new s o l ~ t i o n ~  are explicitly 
&Ire" 

.,... " .L ~.,.~ .'..,~~- " ~ ~ ~ . ~ ~  ~~~~.~~~ 
.E"~ -Y* *LC"-L1Y ' I  "i "",*I,, , 1 5 1  I Y I Y L I U I I ~  "1 

1. Introduction 

The solutions of Yang-Baxter equations (YBE)  attract more and more attention because 
of their importance in both mathematics and physics, such as statistical models [l]?, 
scattering matrices [2], knot theory [3]+, conformal field theory (CFT) 1419, quantum 
groups [5-91, and so on. Typically explicit examples of the solutions o i m ~  are those 
associated with the fundamental representations of B,, C, and Dn (as well as AY: and 
AKl-,) as given by Jimbo [7], Reshetikhin [SI and others [lo, It]. It is well known 
that these solutions possess 'perfect' properties; for example, the usual classical limits, 
in accordance with the general conclusion of Belavin and Drinfeld [12], and the 
q-analogue CG coefficients [8,13] and also the standard way of constructing the 
q-eigenvalues and the corresponding q-projectors [8] Moreover, this type of solution 
is connected with the current form of the quantum group [6-81. We thus call them 
'standard solutions' of YnE. 

In our previous work we developed a systematic prescription to generate the 
solutions of YnE [14-161. The basic idea is as follows. Firstly, we solve the braid 
relations to give the braid group representations ( B G R ~ ) .  This step obtains the asymptotic 
sokitions of S-matrices (with infinity rapidity). In the process of the weight conservation 
should be taken into account. Secondly, for a given BGR we present a general prescrip- 
tion of Yang-Baxterization to generate the corresponding solution of YBE [15]. Finally, 

t This reprinted volume ~ 0 1 1 ~ ~ 1 s  together many origindl aRielei 
i A generai reierence 
5 Examples of the connectton between braid group reprerentationr and CFI 
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for given BCRS we follow Faddeev-Reshetikhin-Takhtajan (FRT) [ I71  to establish the 
related quantum group (QG) structures which, in general, may not he the same as the 
standard ones if the BCRS are not standard [18]. 

Therefore, we see that B O R ~  play the central role in finding solutions of YBE and 
constructing QG structures from the point of view of FRT. 

in this paper we would like to present a general form of B G R ~  associated with the 
fundamental representations of B,, Dn and C. that after Yang-Baxtenzation automati- 
cally generate the twisted extensions; for example, AY: and A?:-l corresponding to 

L nis soiuuon system cunrains me siandard famiiy as a pariicuiar case; 
however, there exists a new family of BORS. We call these new solutions 'exotic solutions' 
to distinguish them from the standard ones. Actually, the exotic B C R ~  associated with 
S1,(2) was first introduced by Lee et a1 1181 

E" and E", - ~ : ~  ~~~.~~ _ ' ~ ~  

2. New solutions of BGRS 

For completeness we first list the standard soluttons of BGR. denoted by T for BL", 
C'." and D!,", as given by Jimbo [7]: 

T = q  E e c * O e f i + w  1 ekkQem,+ 1 ehQemk 
lrco k c m  l r r m  

l i m t o  X i m i 0  

where w = q - q-' and 

~ ~ = 1 ( - ( 2 N - l ) / 2 G k S  -$), ~ ~ = - l ( f s k < ( 2 N - l ) / 2 )  for C',"and s k = l  forB',", 
D"' 

n .  

k+f  ( - ( N - l ) / 2 s k < O )  
(k=O) 
( O <  k S ( 2 n  -1)/2) 

for cp. 
The labelling set above is taken to be 

L = [ ( N - 1 ) / 2 ,  ( N - 1 ) / 2 - 1 , .  . . , - (N-1)/2]  

12.3) 

(2.5) 

which is a little different from that of Jimbo [7] N = 2n + 1 for B. and N = 2n for D. 
and C.. 
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Now we extend the result to cover more general cases 
By the weight conservation and CP invariance the BGR T has the general form 

T = E  ukerx@ekk+ Z: wK!,,erkQem,+ Z p%!ekm@emtk 
k<", X l m  

+ 1 q'hm'ek_,@e.l., ( k , m ~ L ( ~ ~ ) . . b = & ~ 8 ~ b )  (2.6) 
X m  

where 

(2.7) , n , b j -  1h.a) ql',.='= q 'La i  
P O t b  - P a + 6  

and 

(2.8) " l Y . < i /  = " , l l . L J /  
_I ,iacj'j=4iiiill>o=9 

<>O 

in which 

a, b, c. d E [ ( N  -1)/2, ( N  -2)/2- 1,. . . , - ( N -  1)/21. (2.9) 

Equations (2.7) and (2.8) come from the restrictions of the 'six-vertex-type' solutions. 
Foilowing our previous works [14j ihe corresponding diagrammatic expression reads 

a b  a a  a < b  a # b  a -p 
\ 

(2.10) 
x =Ua /..{+..'. jsi+p" x +p' \lJ v 

i;t 
c d  b a  c - c  

where 

a b  a # b  I*-/= {i otherwise 
c d  b a  

a = d # b = :  
otherwise. 

a = c, b = d, o < b 

Substituting (2.6) into the braid relations after tedious calculattons, including the use 
of the extended diagrammatic technique [ 141, we derive the following general solutions 
O f  BGAs: 

where 

for k # O  - 1  u k = q  or -q 

and 

U-x = Uk. 



2682 Mo-Lin Ge et al 

The a&," are given by 

i 

a'", = 

( k  = m = O )  

(k- m f  0) 

( k =  - m  C O )  

for 

I 11;' ( k = m l  

( k  <O, m > 0, k +  m t 0) 
( 1 )  where - E  = ! for CL'' and E = I for D, . 

The distinct eigenvalues are given by 

( r - h , ) ( T - h 2 ) ( T - - A J ) = 0  

where 

A ,  " 2  

-4 
-1  

iB" 4 

- I  
-4 

(2.14) 

I 12.15) 

When one of u,s IS not equal to 4 the eigenvalues are different rrom the standard ones, 
i.e. we meet new solutions It is easy to understand that the solutious derived are 
natural generalizations of the standard ones from tke point of view of the block-diagonal 
matrix structures of B G R ~  C14.191. Based on the general discussion the BGR under 
consideration possesses the form 

T=b!ock diag(T,, T I , .  ., T,-I, T,, T,-I ...., T,, TLj (2.16) 
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where T. is an n x n submatrlx For each odd-dimensional suhmatrix there is a 'central 
element' denoted by u2",+,. The parameters appearing in the sub-blocks will be 
determined by the substitution of one sub-hlock by another in the braid relations. The 
first one is simply q and the second one should be 

However, there is more than one possibility for the third one in solving the braid 
relations. It allows the central element to be either q or -q- ' .  which gives rise to quite 
different forms of the other sub-blocks by braid relations. When all of the central 
elements are q our solutions are the same as Jimbo's [7]. However, if one of the central 
elements is equal to -q-' we will meet new solutions of the BCR. It is not difficult to 
check that the results in [ZO] are special cases of our general forms. 

3. Eirmao-Wenzl algebraic properties 

It has been known that the standard solutions obey Birman-Wend (BW) algebra [lo]. 
Now let us show that the new solutions (2.11)-(2.15) still satisfy the BW algebra. It is 
pointedoutthat a s m  Tandtherelated E = . I - w ~ ' ( T - T ~ ' ) ( w = q - q ~ ' ) s a t i ~ f y t h e  
BW algebra if they satisfy [22] 

(i) €:: = r (a)r (c)6(a ,  b')6(c, d') (3.1) 

(ii) r (a)r (a ' )=- t l  (a'= N + l - a )  (3 2) 

(iii) z T::r2(b) = A;' ( 3 . 3 )  
b 

and 

Tzi # 0 only for a +  b = c + d  (3.4) 

T:,h = T;? (3.5) 

with a ' = N + l - a ,  a belongs to (2.5) S ( a , c ) = l  for ( I = C  and S(u ,c )=O for o i c .  
Uiider such a convention and the labelling set L as well as the notation 

(e,,e)u = 6(a ,  i )  ' 6(b,J) 

the BCR T can be recast in the form 

T =  u,e,,@e,,+ x e,,@e,,+ 1 u;'e&e,., 

(3.6) 

1 1 1 '  '*A,' If, ' 

0. c=,=+ 

+ w  1 e,,Oe,-w 1 r(i)r(J')e,,,@e,, 
,<, 1 <I 

where 
U,. = U, 

ug= 1 (only for E.)  

11, = q or -q-'  

(3.7) 



(3.10) 

i > $ for 0, -1,2 -1!2 n I ,1112 

Noting that 
r ( i ) = r - ' ( - i )  ( i < 0 )  (3.11) 

in terms of (3 11) it is not difficult to prove that the BGR T found in section 2 satisfies 
(3,1)-[3 5) .  i.e. obeys BW algebra. The operator E IS defined by (3.1) where r ( l )  is 
given by (3.10). The direct check shows that Tand E satisfy the BW algebra. Introducing 

q = I @ I @  ... @ T @ .  Q I  (3.12) 

TT,-sT e q*ITTs* I;T,=T,T, J j - k l z ?  

T,-'-T,-'=w(I-E,) 

E,E,,,E,=E, E,Ek=EkE, J j - k J z 2  

E,T, = qE,= E, 

we have 

T,*iTE,*,=E,T+B7; =&E,*, 
(3.13) 

~;, ,E,T,;  = T-'E,*,T;' 

E,,,E,T,,= E,,,T,-' T,,,E,E,,r = T,-'E,*t 

E,T,,,E,=PE, E;=  ( I-- A -wA-') E, 

where A = A 3  and w = q - q-'. 
We emphasize that by interchanging A ,  and A =  and leaving A 3  unchanged we still 

obtainthe BW algebra. This point is important to generate the solutions of YBE associated 
with Ai: and Ai:'-, from the BGRS associated with B',) and D!''. 

4. Yang-Baxterization 

Since the general solutions (2.11)-(2.13) satisfy the BW algebra it is easy to perform 
the Yang-Baxterization according to the discussions in [15,21,22]. As was pointed 
out in [I51 and [21] there are two ways to Yang-Baxterize the BW algebra. One solution 
of the YaE IS 

R,(X) = A ~ X ( X - 1 ) T ~ ' + ( 1 + A , / h ~ + A Z / A 3 i A 1 / A 3 ) X I  -A; ' (x  - l ) T  (4.1) 
and the other one, denoted by R,(x) ,  can be obtained by A , - &  and A,++,!, in R k x ) .  
For simplicity we only write the explicit form for case (a) under (2.9): 
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(4.3) 

(4.4) 

&,duk)=a,k(u;').  (4.5) 

The &,(x) can be obtained by the formal interchange 9 e - 9 - I  and keeping A, 
unchanged. The solutions thus derived correspond to the 'twisted' ones. For instance, 
correspondng to d,s of B y i  and D'.", case (b) gives the solutions relating to AE' and 

respectively. This is easy to check by means of the standard solutions. We note 
that case (b) is the 'normal' solution for C,,; however, case (a) is still a solution We 
do not know about the Lie algebraic description of case (b) for C. yet. All of the new 
'twisted' solutions deserve to be understood. 

It is worth discussing the eigenvalues in detail, since they relate to the diagonal- 
ization of BGRS. The first two eigenvalues A ,  = U = 9 and A > =  U = -9-' appear only in 
the sub-blocks other than the largest one, whereas the third eigenvalue A =A,  only 
appears in the largest sub-blocks. We thus focus on considering the eigenvalue equation 
of the largest sub-blocks. By calculation we find that 

when 

There are three distinct eigenvalues for E,, whereas when 

IS equal to -tu or + U  the eigenvalue equation is reduced to 

( A - U ) " ( &  U)" = O  
namely, the number of distinct eigenvalues is no longer the same as the decomposition 
dimension, being two rather than three. For instance, for C, we have the minimum 
polynomial 

( T - u ) ' ( T -  U) =o.  
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The multiplicity of two in (4.6) is essential This indicates that the corresponding BGR 

cannot be diagonalized. One can check this statement generally or explicitly through 
example, say Ci Even in such a case it is proved that solutions of BGRS can still be 
Yang-Baxtenzed by either case (a) or case (b). 

J. Quantum group structure 

As is known, for 3 given BGR the corresponding quantum group can be constructed 
with the help of the Faddeev-Reshetikhin-Takhtajan (FRTI approach 191. However, 
for our probleni the direct application of FRT is complicated and we, thsrefore, follow 
[li], using an equivalent but simple technique to set up desired relatioils satisfied by 
the generators of quantum groups (i.e. algebra). Suppose 

(5.1) R ( x )  = A( x) T + B( x) I + C (  x) T-' 

R,z(x)dz , (x?)R, , (v )  = R , ( y ) R , z ( x Y ) R z , ( x )  (5.2) 

satisfies the YBE 

then the Yaw-Baxter operator can be defined by [ l I ]  

( f " h ( X ) ) d  = R X x )  ( 5  3) 

R ( x y - ' ) ( t ( x ) @ r ( > ) )  = ( t ( y ) o r ( x ) ) R ( x ~ , - ' ) .  (5.4) 

in accordance with 

Following [ill the asymptotic behaviour of t ( x ) y - o  and ~ ( X ) ~ - L ~  gives the generators 
of quantum group by omitting the factors A(x),_,  and C ( X ) ~ - L ~  (even the limits tend 
to infinity). - 

1 he caicuiations are iengthy so we oniy give the resuits. 
(i) For B, we have 

(L(-~l)a.%ly-<, 

= a(x)l~-,.~u,s.,s,,~s,,l,,, , + u;'6.,8,~.} 
m = n + ,  

= A ( x ) I A ~ , ) ~ ~  

~ L ( x ) ) a b l x + m  

= c ( x ) l ~ - ~ ~ u ~ ~ 8 ~ ~ ~ ~ , + 8 ~ ~ l ~ ~ , . ' ,  + G,*6,..) 

= c(X)lr-&3d 
a = , , + ,  

( t ,+ , , (x) ) .dr4  

= A ( ~ ) L d ~ 8 ~ 3 ~ + , ~ -  w r ( i ) r ( N -  iMw-,& b }  

= A(x) lr -a iv(e, ) .b 

(L+l(X))oh)l r - n  

= C ( ~ ) l . - , { - w 8 . , ~ , 8 , , +  w r ( i  + 1)r(i')8,,.,8w-z,,} 

= C(X)IT-a(-W)(l;)nb. 
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Introducing 

K, = k,k,-:, K, = h: 

X:=e ,  x ;  =A r = l , 2 ,  . . , 1 1 - 1  

x: =(u,,tu;')"Le, x ,  =(U, t U ; ' ) y ,  

we obtain 

[x:. x;j = S , , ( K , - K ; ' ) / w  

K.X:-K ; I  = ( ~ )*'x, I = ] , .  , n - l  

I,] = 1, . , n 

K,.~,x:K,.', = u:'x: r = l , .  >,n 

I( X ' K - '  = ( )*".i 

K,,,x:K;:, = u::,xr i = l , .  , n - 2  

K,,XF., K,' = ( i i p x "  n II n 

K,X: K ;' = x, 1 1  -11 > 1, K,K, = K,K, 

The Sene relations become, under the representation, 

( X y  = 0 i = l ,  . , n - 1  ( X Y = O  

h( Y: 1 = k,+ ,o U: t x: c3 k, 

The coproducts read 

:=!. .. . n - !  

A(X , )=  I O X I + X l O k .  

A ( X ; ) =  k ; 'OX;+X;Ok; : ,  

A ( X ; j  = k;'O.Y;+X;Oi A(k ; )=  k,'OkT 

where I stands for the unit matrix. 
The antipode and the co-unit are given by 

y l k , ) =  k;' y ( 1 )  = I E ( X ; ) = O  e (k : ' )  = 1 

y (X: ,=  -k;:,X:k; ' y ( X ; ) =  -k,.Y;k,+, 1 = 1 , .  . , n - 1  

y ( X , ) = - X i k ; '  y ( X , ) =  -k ,X,  

( i i i  For C,,, by introducing 

i K,  = k,k;:, K ,  = k. 

X :  = e, X ; = J  / = I , . .  . n - 1  

X:=( l -r ' (n) ) - ' e , ,  X ; = ( l - r ' C n t l ) ) - y n  

we derive 

[X: ,X ,J= &,(I(,- K ; ' ) / w  1 , ] = 1 , .  , n  

K , x : K ; ~  = (u,u,+J*'x: I =  I , .  . . , n-1  

K.x:K;'=(u,)*'x:, 

K,_,x:K;:, = (u.)''x; 

K- ,X:K;_ ' ,=a: 'X :  K,.,x:K;:, = u:+,x: i = l ,  . . , n - l  

,, ., r, r, 
i i - j i > i ,  R,A,=A+,. 

., "l ,,-I = "f 
%*,A. - d l  
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The Sene relations under these particular representations rezd 

(x:)Z=o i =  1,.  . . , K. 
The coproducts are given by 

i =  1,. . . , n - 1  I A(X:)=  k ,+ ,OX:+X:O% 
A ( X i ) =  k ; 'OXr+X;OkL' ,  

A(X: )  = k O X : + X : O  k, 
A(X , )=  k , 'OX,+X,Ok , '  

A(k:)= kFBk:. 

The antipode and eo-unit are given by 

y (k , )=k; '  &(X: )=O d k : )  = 1 

y ( X : )  = -k;:,X:k;' y(.X;)= - k X k , + ,  
y ( X : ) =  -k,'X,k,' y(X , )  = - k X i k n .  

(iii) For Dn we have 

( r n - , " + , ( x ~ ) ~ l , l x + ~  

= C ( ~ ) l ~ - ~ t - w & ~ + ~ % ~ - ,  + wUn + 1 ) U n  + 2 ) L + , M  

= - C ( x ) i X . , d f h  

(~"+,"-'(xMr-0 

= A(X)I~-, ,{W~~~-&+, - W n  - i ) r (n )6dbn+21  

= A(~)lx-o~(pl)~b. 

Introducing 

K, = k,k;:, 
X : = e ,  K = f ;  i = l , .  . . , n - 1  X :  = e:, X ; =  f; 

i =  1,. . . , n - 1 ,  K .  = k ._ ,k  

we obtain the foiiowlng re!ations: 

[X: ,  X,J= S,IK, -K;')/w 

K,X:K; '=  ( ~ p , + , ) * ' X f  
K,,X'K;'= (un-,un)*'X: 

K,_,x:K;?, = u:'x: i = l , .  . , n - 1  

K,+tX:K;i,  = ( U , + S ) ~ ' X ;  

r, j = 1, . . . , n 
i= 1,. . . , n -1  

K,,.,x:K;:, = u:i,u;lx: 
K"X:-,K,1= (U.-,)"'UX'X,_, 

K ~ - ~ x : K ; ! ~  = ( U ~ - ~ ) = ~ X :  

K,X,'_,K,'=(u._,)"X~_, 

K,X;K;' = Xf l i - l l > l  i, j # n, n - 2  

K,K, = K,K, i =  1, .. . , n. 
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Under the chosen representatioes the Serre relations are 

(x:)'=o 
The coproducts are given by 

i, = 1, . . . , n 

1 = 1 , .  . , n - 1  I A ( X : ) =  k , , ,OX:+X:Ok ,  

A ( X ; )  = k;'O.X;+X;Ok;+', 

L \ (X+)  2. k, OX'+ X : O  kn-, 

A ( X ; ) =  k , ! ,OX,+X;Ok , '  A(k")= kf 'Ok: ' .  

The antipode and co-unit are given by 

y ( k , ) = k ;  E(X;)=O E(k:') = 1 

r ( p )  -k;:,X:k;' 

y t X ; )  = -k,X;k,+, i = l , .  . , n - l  

y ( X " ) =  -k, 'X;k, l ,  y ( X J  = -k,-,X;k.. 

We would like to emphasize that in the standard cases were U, = q for all indices 
i the quantum group derived in this section is nothing but the usual quantum universal 
enveloping algebra shown by 

[X: .X; ]=S , , (K , -K; ' ! /w  

K,X,K;'=qaijX, K,K,=K,K,  

with a. being the Cartan matrix element of Lie algebras B,, C. and 0,. 
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